scholarly journals Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis

2000 ◽  
Vol 43 (11) ◽  
pp. 2501-2512 ◽  
Author(s):  
Georg Schett ◽  
Makiyeh Tohidast-Akrad ◽  
Josef S. Smolen ◽  
Beatrice Jahn Schmid ◽  
Carl-Walter Steiner ◽  
...  
1998 ◽  
Vol 18 (2) ◽  
pp. 790-798 ◽  
Author(s):  
Dorothee C. Schönwasser ◽  
Richard M. Marais ◽  
Christopher J. Marshall ◽  
Peter J. Parker

ABSTRACT Phorbol ester treatment of quiescent Swiss 3T3 cells leads to cell proliferation, a response thought to be mediated by protein kinase C (PKC), the major cellular receptor for this class of agents. We demonstrate here that this proliferation is dependent on the activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. It is shown that dominant-negative PKC-α inhibits stimulation of the ERK/MAPK pathway by phorbol esters in Cos-7 cells, demonstrating a role for PKC in this activation. To assess the potential specificity of PKC isotypes mediating this process, constitutively active mutants of six PKC isotypes (α, β1, δ, ɛ, η, and ζ) were employed. Transient transfection of these PKC mutants into Cos-7 cells showed that members of all three groups of PKC (conventional, novel, and atypical) are able to activate p42 MAPK as well as its immediate upstream activator, the MAPK/ERK kinase MEK-1. At the level of Raf, the kinase that phosphorylates MEK-1, the activation cascade diverges; while conventional and novel PKCs (isotypes α and η) are potent activators of c-Raf1, atypical PKC-ζ cannot increase c-Raf1 activity, stimulating MEK by an independent mechanism. Stimulation of c-Raf1 by PKC-α and PKC-η was abrogated for RafCAAX, which is a membrane-localized, partially active form of c-Raf1. We further established that activation of Raf is independent of phosphorylation at serine residues 259 and 499. In addition to activation, we describe a novel Raf desensitization induced by PKC-α, which acts to prevent further Raf stimulation by growth factors. The results thus demonstrate a necessary role for PKC and p42 MAPK activation in 12-O-tetradecanoylphorbol-13-acetate induced mitogenesis and provide evidence for multiple PKC controls acting on this MAPK cascade.


2005 ◽  
Vol 289 (3) ◽  
pp. F593-F603 ◽  
Author(s):  
Andrey V. Cybulsky ◽  
Tomoko Takano ◽  
Joan Papillon ◽  
Krikor Bijian ◽  
Julie Guillemette

Extracellular signals may be transmitted to nuclear or cytoplasmic effectors via the mitogen-activated protein kinases. In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of phospholipases and protein kinases. This study addresses the complement-mediated activation of the extracellular signal-regulated kinase (ERK). C5b-9 induced ERK threonine202/tyrosine204 phosphorylation (which correlates with activation) in GEC in culture and PHN in vivo. Expression of a dominant-inhibitory mutant of Ras reduced complement-mediated activation of ERK, but activation was not affected significantly by downregulation of protein kinase C. Complement-induced ERK activation resulted in phosphorylation of cytosolic phospholipase A2 and was, in part, responsible for phosphorylation of mitogen-activated protein kinase-associated protein kinase-2, but did not induce phosphorylation of the transcription factor, Elk-1. Activation of ERK was attenuated by drugs that disassemble the actin cytoskeleton (cytochalasin D, latrunculin B), and these compounds interfered with the activation of ERK by mitogen-activated protein kinase kinase (MEK). Overexpression of a constitutively active RhoA as well as inhibition of Rho-associated kinase blocked complement-mediated ERK activation. Complement cytotoxicity was enhanced after disassembly of the actin cytoskeleton but was unaffected after inhibition of complement-induced ERK activation. However, complement cytotoxicity was enhanced in GEC that stably express constitutively active MEK. Thus complement-induced ERK activation depends on cytoskeletal remodelling and affects the regulation of distinct downstream substrates, while chronic, constitutive ERK activation exacerbates complement-mediated GEC injury.


Sign in / Sign up

Export Citation Format

Share Document